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Abstract
Lens flares are an artifact of light passing through a photographic lens in
unintended ways. Rendering these is invaluable for many applications, but
no public implementation of physically-based real-time rendering exists to our
knowledge. In this thesis, we present a technique for using sparse polynomials
to more efficiently render lens flares, which were used previously to model lens
distortion and aberrations. Additionally, we provide a flexible implementation
of select previous methods for interactive lens flare rendering and our polynomial
approach.
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1 Introduction
Lens flares are made up of different artifacts caused by light paths other than
the imaging path of a lens system, the most obvious ones of which are ghosts
and diffraction at the aperture. Ghosts are different shapes on the resulting
image caused by internal reflections of bright light sources off different lens
surfaces. In lens design, they are considered to be a degrading artifact, because
they reduce the contrast and distract from the primary subject. Undesired light
being rendered onto the sensor is commonly reduced either by shielding the
lens using lens hoods or by altering the lens design to incorporate anti-reflective
coatings.

In computer graphics, cinematography, and artistic photography, lens flares
are often desired as they increase the perceived brightness of bright light sources
and add visual interest. For this reason there already exist many approaches to
rendering lens flares [14]. These approaches are typically based on ray tracing,
which is a technique for rendering a scene by tracing rays from a light source
to the sensor. Ray tracing does not simulate any wave optical effects, but these
can be added using a technique by Hullin et al. [5], which we will call sparse
ray tracing.

We present a novel technique for improved lens flares using sparse polynomials
and several methods for fitting polynomials for this application.

We also provide a library for our novel technique including fitting methods,
dense and sparse ray tracing, and two applications using this library.

Outline The remainder of this thesis is organized as follows. Chapter 2 de-
scribes our model of the lens system and how we render ghosts using traditional
ray tracing and the sparse technique. Then in chapter 3 we present our novel
technique for improved lens flare rendering using polynomials and how to fit
dense and sparse polynomials to points generated by ray tracing. Afterwards
we present our implementation in chapter 4. Our results are discussed in
Chapter 5. Finally, Chapter 6 gives the conclusion of this thesis.
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2 Light transport

This chapter begins by defining our model of lens systems including the sensor.
Then we discuss our use of spectral rendering, and finally, the dense and sparse
ray tracing techniques are discussed.

2.0.1 Lens Model

We model a lens system as a list of elements followed by a sensor, as shown
in figure 2.5. The elements are either a lens surface or the aperture. Every
element has a radius and a position.

Apertures additionally include their number of blades.
Lens surfaces also consist of coatings, and one set of Sellmeier coefficients for

outside the lens and one set for inside.
The sensor replaces the radius, with a function from wavelength to an RGB

value, which is specified in section 2.2.4 and needed for spectral rendering, as
discussed in section 2.1.

2.1 Spectral Rendering
In more traditional ray tracing applications, each ray carries information about
the RGB color of the light from the source to the sensor. To model spectral
phenomena, such as those discussed later in this section, each ray is assigned a
wavelength and propagated through the lens system loosing energy as it passes
through each element. Once a ray hits the sensor, the wavelength and energy
is used to calculate the RGB color and intensity of the light.

Rendering using spectral rendering is more computationally expensive than
traditional ray tracing, because many rays are needed to fill out the spectrum
and form white light. This performance cost is necessary however, because
many ghosts exhibit strong dispersion, and the anti-reflective coatings color the
ghosts in different colors. Both of these factors are important for the realism of
the lens flare and can only be modeled directly using spectral rendering.
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2 Light transport

2.1.1 Coatings
Coatings on a lens surface are used to reduce the amount of light reflected by
the surface.

Here we only consider “quarter-wave” coatings, which are described by a
thickness and an index of refraction. “Quarter-wave” coatings are made up of
a thin layer of low refractive index material. These minimize reflections at a
single wavelength and a single angle of incidence, so each set of parameters has
a certain color of light that passes through preferably, an example of which
can be seen in figure 2.1. This means to get a lens system that renders colors
faithfully, one needs to use multiple kinds of “quarter-wave” coatings. This
faithful rendering for the non-reflected path through the lens results in colorful
ghosts, because each ghost takes a different path through the lens and therefore
different wavelengths are accentuated or reduced by the coatings.

Figure 2.1: Coating

2.1.2 Dispersion
Dispersion is the phenomenon that the index of refraction of a material changes
with wavelength, resulting in light of different wavelengths being imaged to a
different position on the sensor by a lens. In ghosts, the light is scattered by
the lens, multiple times, and in ways where dispersion has not been minimized
by the lens design. This results in much stronger dispersion than in the direct
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2.2 Ray tracing

image. Figure 2.2 shows an extreme case of this.

Figure 2.2: A particular ghost with and without dispersion.
Rendered with Polyflare.

To model dispersion, we use the Sellmeier equation [18], which approximates
the refractive index of a material as a function of wavelength. Equation 2.1 is
the most common Sellmeier equation and has three terms.

The Sellmeier equation: n2(λ) = 1 + B1λ
2

λ2 − C1
+ B2λ

2

λ2 − C2
+ B3λ

2

λ2 − C3
(2.1)

The coefficients B1, B2, B3 and C1, C2, C3 are readily available for common
materials used in lens design.

2.2 Ray tracing
The most naive technique for rendering ghosts is recursive ray tracing. This
works by generating rays at the light source and tracing those through the lens
system. Because of the number of rays needed for an acceptable noise level
this is usually reserved for offline rendering, but it results in the most accurate
images. These properties make it viable to use in high-budget movies like “The
Lego Movie 2: The Second Part” [13].

We don’t use the usual approach of recursive or randomized reflection or
refraction at each surface, but rather enumerate all possibilities and generate
each ray once for each. This is more efficient, because the decision of whether
to reflect or refract is done only once and does not have to be made each time
the ray is intersected with a lens element.

5



2 Light transport

Additionally, the order of intersections is given by the order of the elements,
not by the order of intersections, as described by Hullin et al. [5].

Figure 2.3: “Left: traditional intersection with the nearest surface along the
way.
Right: our intersection in fixed sequence. Note how the outermost
rays still converge to the focus.”
Modified from Hullin et al. [5]

The ordering of intersections brings the benefit of more continuous results
around the edges of the image, which is especially important for the sparse ray
tracing technique, as discussed in section 2.3.

2.2.1 Pipeline Overview
Depending on the technique used, different parts of the pipeline are executed.

Polynomial rendering uses polynomials for the ray propagation, but is other-
wise sparse.

Figure 2.4: The pipeline for rendering a ghost.

Ray prop-
agation

Ray gen-
eration

sparse?

Triangu-
lation

yes

dense?no

Point
rendering

yes

Rasterizationno
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2.2 Ray tracing

2.2.2 Ray initialization

For all rendering techniques, the rays origins are initialized at the light source.
Their directions are uniformly distributed.

For rendering, the directions form a grid of equally spaced points. To make
sure any errors do not correlate, for function fitting, we sample the directions
and positions of rays in a uniformly random fashion. To generate data for
fitting, sampling is done randomly for both the position of the light source and
the direction of the ray.

We use Planck’s law to calculate the power of each ray based on the wave-
length to create white light.

2.2.3 Ray propagation

Once the ray is initialized, it is traced through the lens system. This is done by
intersecting the ray with every lens element in the predetermined order given
by the ghost this ray belongs to.

Because all glass elements in our model are either spherical or cylindrical,
the intersection with a lens element is a ray-sphere or ray-cylinder intersection,
which can be computed analytically. Algorithms also exist for aspherical lenses,
such as described by Joo et al. [8], but they are not implemented here.

7



2 Light transport

Figure 2.5: 2d section of ray tracing for the first ghost in a two-lens system.
Rendered with Polyflare.

As discussed in the introduction of this section 2.2, the order of intersections
is given by the order of the elements, as this avoids discontinuities outside
the physical lens element. This is only important for the sparse ray tracing
technique, where rays outside the optical system are used for interpolation.

2.2.4 Wavelength to RGB color

Commonly, the wavelength of light is converted to an RGB color by first
converting it to the CIE XYZ color space. Then, the XYZ color is converted
to RGB by the CIE XYZ to RGB matrix.

To achieve a more realistic result, we use a lookup table from Mauer [11]
generated by passing a narrow band of wavelengths to a camera sensor and
observing the resulting RGB values.
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2.3 Sparse Ray Tracing

2.3 Sparse Ray Tracing
2.3.1 Previous Work
The most impactful optimization Hullin et al. introduced in “Physically-Based
Real-Time Lens Flare Rendering” [5] was to use a sparse ray tracing technique.
This works by using the GPU rasterization pipeline to interpolate the traced rays
and gave about a 5300 times speedup over dense ray tracing. The rasterization
pipeline is highly optimized and offers a huge performance boost as we will see
in chapter 5.

In particular, a grid of rays is generated that is then traced through the lens
system and the resulting positions and other parameters are then used to form
a triangle mesh which is then rendered using a fragment shader.

Figure 2.6: Visualization of how rays are part of a triangle. With help from
Olivia Mélancolie
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3 Polynomials
Polynomials have many useful properties, such as being able to be fit to data
easily, being smooth, being easily derived, and being cheap to evaluate. Using
polynomials in computer graphics is not a new concept, as they have been used
successfully previously in rendering images through lens systems by Hullin et
al. [6]. However, instead of using them for lens distortion and aberrations, we
apply them to rendering lens flares.

Specifically, polynomials are a set of functions constructed by adding together
a set of monomials. Monomials are made up of a coefficient and a power for
each variable. We use polynomials with dimension 4 of degree d, Where the
first two dimensions are the position of the light source, and the other two
give the direction of the light going from the light source. The wavelength is
ignored here for simplicity’s sake, but this would have to be taken into account
for realistic results including dispersion.

Exponents: dx + dy + dz + dw ≤ d (3.1)

Monomial i: mi = ci · xdi
x

x · x
di

y
y · xdi

z
z · xdi

w
w (3.2)

Polynomial: p(x) =
n∑

k=0
mk (3.3)

We call a polynomial dense, when all monomials of the given degree are present.
If this is not the case, we call it sparse.

3.1 Previous Work
Hullin et al. used a “construction kit” approach for their polynomials, meaning
they constructed a polynomial for each lens element and concatenated them
together afterwards [6]. This method requires little preprocessing, but the error
from each lens element is added to the final polynomial. These polynomials
were only passingly applied to the problem of ghost rendering.

Schrade et al. improved on this by computing a polynomial of the entire
lens system [17]. Additionally, they selected the most important terms of the
polynomial for faster evaluation. Schrade et al. only used the polynomial for
the lens distortion and aberrations, but not for the ghost rendering.
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3 Polynomials

3.2 Irradiance calculation using Polynomials

We use polynomials to calculate the irradiance of the ghosts directly instead of
using an additional compute step after ray tracing using the area of triangles
around each vertex.

The brightness of a given pixel on the sensor is determined by the radiant
flux of the light hitting the sensor. When starting with an isotropic point light
source, the radiant intensity is constant, so the irradiance of a ray bundle at
the sensor is the quotient of the area of the solid angle of the ray bundle at the
light source and the area of the ray bundle on the sensor.

Using an anisotropic point light source, the starting intensity of each ray
bundle is not constant and has to be multiplied with the quotient, that is
calculated as above.

Differentially this is given by the determinant of the Jacobian of the ray
tracing function. a and b are the input angles.

|Df | =
∣∣∣∣∣

∂fx

∂a
∂fx

∂b
∂fy

∂a
∂fy

∂b

∣∣∣∣∣ = ∂fx

∂a

∂fy

∂b
− ∂fx

∂b

∂fy

∂a

For polynomials, this can be explicitly calculated, because of the ease of
derivation.

Because this equation only depends on the initialization parameters, it can
be calculated before ray tracing and without taking any other vertices into
account.

3.2.1 Fragment Intensity

One additional benefit of calculating the irradiance differentially is its ability to
be evaluated in the fragment shader instead of a compute shader operating on
vertices, and therefore per pixel instead of per vertex. This results in a slight
increase in visual fidelity at a slight performance cost.
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3.3 Dense Polynomial Fitting

Figure 3.1: Comparison of the intensity being calculated per vertex vs per
fragment

(a) Vertex (b) Fragment

3.3 Dense Polynomial Fitting
We fit a dense polynomial to the generated points using linear least squares as
described by Schrade et al. [17].

Linear least squares is a method solving linear equations to data. It works
as follows:

Using the multi-index α := αi|i ≤ A,
∑

αi < d. The total number of terms is
A. To fit Polynomials with the total number of terms A, create a matrix and
the vector of data points like

X =


xα1

1 xα2
1 xα3

1 · · · xαA
1

xα1
2 xα2

2 xα3
2 · · · xαA

2
... ... ... . . . ...

xα1
N xα2

N xα3
N · · · xαA

N

 and y⃗ =


y1
y2
...

yN


Now, the optimal coefficients β⃗ are: β⃗ = (XTX)−1XTy⃗ [10]. We can rearrange

the matrix and vector to get:

β⃗ = (XTX)−1XTy⃗

⇒ (XTX)β⃗ = (XTX)(XTX)−1XTy⃗

⇒ (XTX)β⃗ = XTy⃗

13



3 Polynomials

Then solve for β⃗ using linear algebra.
We can then use our model of the form ̂⃗y = Xβ⃗.

3.4 Sparse Polynomial Fitting
Schrade et at. [17] used sparse polynomials to evaluate polynomials of high
degree quickly; they reduced the number of terms to a constant s, resulting
in a sparse polynomial. This process is not as straight forward as selecting
the terms with the highest coefficients, because the coefficients may correlate
strongly and therefore removing some terms may cause others to grow. A
specific combination of monomials could be responsible for a pattern that is
otherwise missing in the resulting polynomial.

Schrade et al. [17] used a variant of orthogonal matching pursuit 3.8 for this
purpose, but also saw room for improvement, which is why we propose three
alternative solutions in the following sections.

3.5 Orthogonal Polynomials
Orthogonality is the property of two elements of a vector space that the
dot product of the two vectors is zero. For polynomials, this dot product is
commonly defined as an integral over the entire real numbers with a weight
function [1].

⟨Pi, Pj⟩ :=
∫ ∞

−∞
Pi(x)Pj(x)w(x)dx

Both the position and the direction of each ray are finite and easily normalized
to [−1, 1], so we restrict the integral to that interval and set w(x) = 1, as is
done in Legendre polynomials [1]:

⟨Pi, Pj⟩ :=
∫ 1

−1
Pi(x)Pj(x)dx

The polynomials are orthogonal if and only if:

⟨P1, P2⟩ = 0

Using the above definition, an orthogonal basis can be constructed. This defines
the Legendre polynomials up to a constant called the standardization. To avoid
unnecessary constants however, we will use the following, more restrictive
definition of orthonormal polynomials:

⟨Pi, Pj⟩ = δij

14



3.5 Orthogonal Polynomials

where δij is the Kronecker delta:

δij =

1 i = j

0 i ̸= j

This results in the standardization P0 = 1√
2 for the Legendre polynomials used

in this thesis.

3.5.1 Benefits of Orthogonal Polynomials
Because the contribution of each polynomial in the basis is independent, or-
thogonal Polynomials can be fit to data independently of each other. This
presents two major benefits for our application:

Fitting Fitting time scales linearly with the number of terms.

Sparsity The terms with the highest coefficient are the most important.

These benefits still exist in higher dimensions, as each base polynomial can be
multiplied together to form a higher dimensional polynomial basis, which is
still orthogonal.

3.5.2 Higher Dimensions
An orthogonal basis in one dimension can be used to construct an orthogonal
basis in a higher dimension by multiplying the base polynomials of different
dimensions together [4]. Therefore, they can be evaluated quickly using one-
dimensional lookup tables.

For four dimensions, one would multiply four basis elements Pi, Pj, Pk, Pl,
one for each dimension. This increases the degree d of the polynomial to
the sum of the degrees of the basis polynomials. So it needs to be limited
to i + j + k + l ≤ d.

4 dimensions: Pijkl(x) = Pi(x1) · Pj(x2) · Pk(x3) · Pl(x4)

In order for these polynomials to exhibit the same benefits in higher dimen-
sions, they must be orthogonal with respect to the dot product:

⟨Pijkl, Pmnop⟩

:=
∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1
Pijkl(x, y, z, w) · Pmnop(x, y, z, w)dxdydzdw

= ⟨Pi, Pm⟩ · ⟨Pj, Pn⟩ · ⟨Pk, Po⟩ · ⟨Pl, Pp⟩

15



3 Polynomials

In the case where ijkl = mnop, the dot product is one, while if any one of the
indices is different, the corresponding term is zero, and the dot product is zero.

To more efficiently evaluate each basis polynomial, we propose the use of
lookup tables for each basis polynomial that are then multiplied together to form
the higher dimensional polynomial. This is more efficient than evaluating each
term individually, because evaluating each basis polynomial means computing
a power, a multiplication, and an addition for up to d terms.

Because of the problems discussed in section 3.5.5, we did not implement
this approach in our application.

3.5.3 Fitting to Data
Once all basis polynomials have been calculated, the coefficients for each can
be calculated directly by interpreting the data points as a pointwise defined
function and calculating the dot product of each basis polynomial with the
data-function d:

βijkl = ⟨Pijkl, d⟩ =
N∑

j=1
Pijkl(xj) · yj

Because the scalar product of the basis elements are independent, the coefficients
can be fit independently and therefore the fitting time scales linearly with the
number of terms unlike with normal polynomials, where the fitting time scales
quadratically.

3.5.4 Sparsity
Selecting the best combination of terms is a difficult problem with normal
polynomials, but with orthogonal polynomials, the best combination is always
the one with the highest coefficients. This is because the contribution of each
basis polynomial to the error is independent of all others.

3.5.5 Problems with Orthogonal Polynomials
Unfortunately, because not all rays entering the lens make it through the lens,
and which rays are discarded depends on the ghost, we were unable to construct
an orthogonal basis of polynomials for efficiently rendering ghosts. Nevertheless,
we still discuss different orthonormal bases of polynomials, as these may prove
useful for applications, where rays are not discarded.
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3.6 Legendre Polynomials

3.6 Legendre Polynomials
The typical standardization for Legendre polynomials is Pn(1) = 1, such as
used for the Rodrigues formula [15].∫ 1

−1
Li(x)Lj(x)dx = 2

2j + 1δij

For this, there exists an explicit formula: From the Rodrigues formula, the
following formula can be derived:

Li(x) = 2i
i∑

k=0
xk ·

(
i

k

)(
i+k−1

2
i

)

Or for each monomial:

mik(x) = xk · 2i

(
i

k

)(
i+k−1

2
i

)

Because of our alternative standardization of Legendre polynomials:∫ 1

−1
Li(x)Lj(x)dx = δij

Our monomials add one additional term highlighted in yellow:

mik(x) = xk 2j + 1
2

(
i

k

)(
i+k−1

2
i

)

Figure 3.2: Legendre polynomials
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3 Polynomials

3.7 Gram Polynomials

Because Legendre Polynomials are defined over the continuous interval [−1, 1],
they are not orthogonal on a grid with a finite number of points.

For this reason, gram polynomials are more useful, which are orthonormal on
a grid with a given finite number of points, where the inner product is defined
as the sum over the points, instead of the integral [2].

⟨Gi, Gj⟩ =
N−1∑
k=0

Gi (xk) Gj (xk) , xk = 2k − 1
N

So the definition of the Gram polynomials is:

⟨Gi, Gj⟩ = δij

Which can be constructed using the Gram-Schmidt process beginning with the
polynomials

Pi(x) = xi−1

When the number of samples on the grid is large, the error of Legendre
polynomials approaches zero and the Gram polynomials approach the Legendre
polynomials.

Figure 3.3: ∑d
i=1

∑d
j=1 |

(∑N
p Li · Lj

1
N

)
− δij|
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3.8 Orthogonal Matching Pursuit

Figure 3.4: Gram polynomials on different number of samples compared to
Legendre polynomials (bottom right)

3.8 Orthogonal Matching Pursuit
Previously, a variant of Orthogonal Matching Pursuit was used by Schrade
et al. [17] to fit sparse polynomials to a set of data points, so this is the first
algorithm we implemented.

Orthogonal Matching Pursuit is a greedy algorithm that starts with an
empty Polynomial and then progressively adds the term with the minimum
error until the number of requested terms is reached. Adding replacement to
this algorithm means that instead of stopping when the number of terms is
reached, the algorithm will continue to replace terms with the one minimizing
the error until the number of terms is reached. The term that is replaced by
the new one is determined by calculating the error of the polynomial with each
of the existing terms replaced and choosing the one with the minimum error.

We also implemented two variations of Orthogonal Matching Pursuit:
No replacement This algorithm is the same as the original, but it stops when

the number of terms is reached instead of replacing terms.

No fitting This algorithm is the same as the original, but it retains the same
coefficients from the dense polynomial.
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3 Polynomials

As discussed in the conclusion of their paper, they see room for future
improvement over orthogonal matching pursuit. We will see in chapter 5, that
especially for modeling ghosts, OMP is not a good choice.

3.9 Simulated Annealing
Annealing is the process of a physical system cooling down and minimizing its
thermodynamic free energy. This process can be seen as an analogy for the
simulated annealing algorithm, where a digital system goes through the same
“cooling” process.

This is modeled by an objective function, an acceptance function, and a
concept of neighborhood. The objective function is the equivalent of the
thermodynamic free energy of the system, while the neighborhood is how steps
can be taken from the current state to the next state. How likely a step is to
be accepted is determined by the acceptance function.

Now the basic idea is that the system is simulated by taking steps in the
neighborhood and evaluating the objective function on the new state. How
large the step is, is determined by the temperature, where a larger temperature
means a larger step size. Each step the temperature is decreased until it is zero
and the algorithm stops.

3.9.1 Simulated Annealing for Sparse Polynomials
Applying simulated annealing to the sparse polynomial fitting problem, the
space of possible solutions is every combination of the required number of terms
from the original dense polynomial.

Taking a step means exchanging terms in the sparse polynomial with an
equal number of terms that are not in the sparse polynomial.

Here, the objective is function is the error of the current sparse polynomial fit
to the data points. It is very important to fit after each step, as this improves
the quality of the fit significantly, as will be seen in section 5.3.2. We define
our acceptance function as the following:

paccept(∆E) =

e− ∆E∗100
t if∆E > 0

1 if∆E < 0

where t is the temperature, which starts at one and linearly decreases to zero.
How many steps to take is calculated using the following formula:

num_steps = max(t3 · num_terms, 1)
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3.9 Simulated Annealing

Both the acceptance function and the number of steps to take are subject to
further tuning in the future.

Thanks to the low sensitivity to uncorrelated noise, we were able to speed
up the execution by selecting a random subset of the points for each iteration
without reducing the quality of the fit by much, as we will show in section 5.3.2.
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4 Implementation

This chapter describes the implementation of Polyflare, consisting of the library
and the applications.

We will start with an overview, go into the chosen languages and libraries,
and finally discuss each component of Polyflare.

4.1 Overview

The Polyflare workspace comprises three Rust crates:

GPU is a GPU-based implementation of the ray tracing algorithms.

polynomial_optics is the CPU part of the ray tracing and polynomial algo-
rithms.

openfx contains the plugin for OpenEffects.

Each of these crates is made up of several modules, each made up of several
files. Files contain structs, which are like classes in C++, but can’t inherit
from other structs. They will be discussed in their relevant sections.
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4 Implementation

Figure 4.1: The Polyflare workspace

Polyflare

GPU

scenes

poly_optics: 2d slice

poly_res: Dense

poly_sparse: Sparse

poly_poly: Polynomial rendering

main

polynomial_optics

legendre: orthonormal polynomials

polynom: dense polynomials

sparse_polynom: sparse polynomials

raytracer: cpu ray tracing

openfx

render

plugin

uses

4.2 Rust
For the CPU implementation of Polyflare, we chose Rust [20] over the more
traditional C++ for the following reasons:

Memory Safety Rust uses a borrow checker to ensure that all values are either
shared and immutable, or non-shared and mutable. Therefore, a value
can not be modified while it is in use somewhere else.

Concurrency Is easy to work with in Rust and through the borrow checker,
concurrency is guaranteed to be safe.

Safety The two concepts above and other parts of the language work together
to avoid undefined behavior and hard to explain crashes, which have been
a source of trouble in previous C++ applications by the author.

Compiler Warnings and Errors, in the eyes of the author, are more helpful
and easily understood than those provided by C++.

Iterators are an important part of the language, and are used in many places
in Polyflare.
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4.3 WGPU

Builtin Package Management allows for many libraries to be used without
having to install them manually and Polyflare makes liberal use of these.

4.3 WGPU
For the GPU implementation wgpu was chosen.

“wgpu is a cross-platform, safe, pure-rust graphics API. It runs natively on
Vulkan, Metal, D3D12, D3D11, and OpenGLES; and on top of WebGPU or
WebGL2 on wasm.” [16]

Using wgpu allows us to run Polyflare on all major platforms without much
effort. In particular, Polyflare is tested to be running on Windows, macOS,
and Linux using D3D12 or Vulkan, Metal, and Vulkan or OpenGL respectively.

Figure 4.2: Visualization of the components in the gfx-rs ecosystem.
Edited from [3].

4.4 Open Effects
We chose to write a plugin for the “Open Effects API” or “OFX” [19].

“The Open Effects API allows plugins written for it to be used in multiple
‘hosts’, such as The Foundry Nuke, Natron, Assimilate Scratch, Sony Vegas, or
FilmLight Baselight.” [19]

To write the plugin for OFX in Rust one needs an intermediate layer. This
is provided in our implementation by “OpenFX bindings” [12].
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4.5 Ray tracing

We need to implement the ray tracing algorithm twice. Once for the CPU and
once for the GPU. These are mostly the same, yet have some differences. They
will be highlighted in their respective sections 4.6.1 and 4.7.2.

4.5.1 Ray initialization

On the CPU, we implemented both random and grid ray initialization, whereas
on the GPU, we only implemented grid ray initialization. For the grid initializa-
tion, ray_num_x, ray_num_y determine which ray on the grid is being initialized,
while sqrt_num is the number of rays in each direction and width is the width
of the grid. For random sampling, only the width and number of rays is needed.

Various parameters, such as width, sqrt_num and the center direction of the
grid are given to the GPU as uniforms, which are then used in the shader.

Source Code 4.1: Generating Rays

1 var dir = posParams.init.d;
2 dir.x = dir.x + (ray_num_x / f32(sqrt_num - u32(1))
3 * width - width / 2.);
4 dir.y = dir.y + (ray_num_y / f32(sqrt_num - u32(1))
5 * width - width / 2.);
6 dir = normalize(dir);
7 var ray = Ray(posParams.init.o, posParams.init.wavelength,
8 dir, str_from_wavelen(posParams.init.wavelength),
9 vec2<f32>(0., 0.), vec2<f32>(0., 0.));

str_from_wavelen(wavelength: f32) -> f32 is responsible for converting
the wavelength from micrometers to meters needed for Planck’s law and bringing
it to reasonable values for the rest of our algorithm.

The temperature of the incoming light is a user-controlled parameter.
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4.5 Ray tracing

Listing 4.1: Calculating the irradiance for each wavelength

1 fn planck(wavelen: f32, temp: f32) -> f32 {
2 let b = 1.380649e-23; // Boltzmann constant
3 let e = 2.718281828459045;
4 let hc = 1.9864458571489286e-25; // h*c
5 let hcc2 = 1.1910429723971884e-16; // 2*h*c^2
6 return hcc2
7 / (pow(wavelen, 5.))
8 / (pow(e, (hc) / (wavelen * b * temp)) - 1.) / 1.e12;
9 }

10

11 fn str_from_wavelen(wavelen: f32) -> f32 {
12 return planck(wavelen / 1000000., 3000.) * 10.;
13 }

Equation 4.1: Planck’s Law

2hν3

c2
1

e
hν

kBT − 1
(4.1)

Because the constants are quite extreme in value for f32 and using them
directly would result in a loss of precision, we use pre-calculated values for
h ∗ c and 2 ∗ h ∗ c2 to avoid the loss of precision. This has the added benefit of
reducing the number of operations needed and therefore increasing the speed
of ray generation.

4.5.2 Ray propagation
The order of intersections in the lens for a given ghost is fully described by
two indices i and j. The ray is intersected with the lens elements until the j-th
intersection, at which point the ray is reflected, then it is refracted backwards
until the i-th intersection, at which point the ray is reflected again to be
refracted through all the lens elements after that point to the sensor.

For the ghost (i, j), where i < j, we iterate through all elements other than
the jth element, at which we reflect for the first time, then trace backwards,
reflect again at the ith element, and finally trace forwards until the end.
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Algorithm 1 Ray propagation

1 for (num_element, element) in elements.iter().enumerate() {
2 if num_element != j {
3 ray.propagate(element);
4 } else {
5 // reflect at the first element,
6 // which is further down the optical path
7 ray.reflect(element);
8

9 // propagate backwards through system
10 // until the second reflection
11 for k in (i + 1..j).rev() {
12 ray.propagate(&elements[k]);
13 }
14 ray.reflect(&elements[i]);
15

16 // then propagate forwards through
17 // the rest of the system
18 for k in i + 1..=j {
19 ray.propagate(&elements[k]);
20 }
21 }
22 }
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4.5 Ray tracing

Figure 4.3: Visualization of the ray propagation.
Rendered with Polyflare

4.5.3 Wavelength to RGB conversion

The lookup tables need to be slightly post-processed to be used, because the
white-balance is not taken into account yet. This white-balancing is left to the
user as creative control.

Listing 4.2: Wavelength to RGB conversion

1 /// Wavelength is given in micrometers
2 fn lookup_rgb(wavelength: f32) -> vec3<f32> {
3 let lower_index = u32((wavelength -

sensor.measuremens[0].wavelength / 1000.0) * 100.0);↪→

4 let factor = (wavelength % 0.1) * 10.0;
5 return sensor.measuremens[lower_index].rgb * (1.0 - factor)
6 + sensor.measuremens[lower_index + u32(1)].rgb * (factor);
7 }
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4.5.4 Drawing

For both sparse and dense ray tracing, all ghosts and wavelengths need to be
added per pixel. To reduce rounding errors, we use an intermediate f16 texture
for the blending, which is then converted in another shader to the final RGB
texture.

4.6 Polynomial Optics

The polynomial_optics library is used to implement the CPU part of the ray
tracing and polynomial algorithms. It also contains a binary, which is used to
test parts of the library.

4.6.1 Ray tracer

The ray tracer module contains the structs and functions needed for ray tracing.
The two main structs are Ray and Element.

Ray represents a single ray, which can be propagated though or reflected by
an Element.

As discussed in chapter 2, each ray contains an origin and a direction,
which are both of type cgmath::Vector3<f64> from the cgmath library, which
implements useful functions, like addition, multiplication, and dot product.

The Element struct represents an element in the lens. It contains a position,
a radius, and the Properties enum. For the aperture, this enum contains a
single u32 integer representing the number of blades in the aperture. For an
Element made of Glass, it contains a Glass struct. This struct contains a
Sellmeier struct, which contains the coefficients of the Sellmeier equation and
a QuarterWaveCoating.

We nest the structs for individual properties within each other to be able
to implement methods on each. For example, getting the index of refraction
(listing 4.3) of a glass is implemented by the Sellmeier struct.
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4.6 Polynomial Optics

Listing 4.3: Sellmeier

1 impl Sellmeier {
2 pub fn ior(&self, wavelength: f64) -> f64 {
3 let wavelength_sq = wavelength * wavelength;
4 let mut n_sq = 1.;
5 for i in 0..3 {
6 n_sq += (self.b[i] * wavelength_sq) / (wavelength_sq -

self.c[i]);↪→

7 }
8 n_sq.sqrt()
9 }

10 }

All different Sellmeier indices, obtained from LaCroix Precision Optics [9],
are saved in a csv file and read by a function in Sellmeier.

Multiple Elements combine into a Lens, where the ray tracing methods are
implemented.

1 pub struct Lens {
2 pub elements: Vec<Element>,
3 pub sensor_dist: f64,
4 }

These Lenses can also be saved and loaded to a file in a human-readable format
using methods on Lens, which use the serde and ron libraries internally.

4.6.2 Polynom
Dense polynomials are represented using the Polynom4d<N> struct. It is generic
over the type of the coefficients, which is N, meaning any numeric type may be
used for the coefficients and input variables.

1 pub struct Polynom4d<N> {
2 pub coefficients: Vec<N>,
3 degree: usize,
4 }

Because the polynomial is dense with a known degree, the coefficients can
be stored without the need to store the exponents for each, as these can be
calculated from the index into the array.
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This step is quite delicate, as we needed to increase bit-depth from 32 to 64
and switch from a naive Rust implementation to an external library for it to
converge. Intel-MKL[7] was chosen for this step.

We fit the dense polynomial by creating a column vector of the desired
output values, and a matrix of the input values evaluated for each term and
then handing these to the mathru library to solve. Initially, we used 32 bit
floating point numbers, but these did not converge until switching to 64 bit.
mathru has multiple back-ends, including a pure Rust implementation, and the
Math Kernel Library allowing for a trade-off between performance and fewer
dependencies.

Sparse from Dense

The functions for creating a sparse polynomial from a dense polynomial also
reside in polynom.

get_sparse implements OMP from section 3.8 and our variants of it.

simulated_annealing implements our simulated annealing algorithm for poly-
nomials.

4.6.3 Sparse Polynom

Unlike for dense polynomials, for sparse polynomials, it is not sufficient to store
the coefficients, because it is not clear which coefficients correlate to which
exponents. Therefore, we introduce the Monomial<N> struct, which stores the
coefficient and the exponent. A list of these monomials is then used to create a
Polynomial<N>.

Thanks to the use of iterators, we were able to multithread the most expensive
operations in the sparse polynomial creation by using the Rayon .par_iter()
instead of the standard Rust .iter().
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4.7 GPU

Source Code 4.2: Calculating the approximate error of a sparse polynomial

1 pub fn approx_error(
2 &self,
3 points: &[(f64, f64, f64, f64, f64)],
4 num_samples: usize,
5 offset: usize,
6 ) -> f64 {
7 (points[offset..offset + num_samples]
8 .par_iter()
9 .map(|p| (p.4 - self.eval([p.0, p.1, p.2, p.3])).powi(2))

10 .sum::<f64>()
11 / num_samples as f64)
12 .sqrt()
13 }

4.7 GPU
All code interacting with the graphics card is contained in the gpu crate.

As outlined in figure 4.1, this crate contains the main application the libraries
necessary for writing it or any other application based on Polyflare.

4.7.1 Main
The application is responsible for the user interaction and the main loop. We
read optional command-line arguments for selecting the graphics API, GPU,
and whether to enable VSync and provide a GUI (figure 5.4) for the user to
interact with. The GUI is implemented with the help of the imgui and winit
libraries.

4.7.2 Scenes
Most of the code for interacting with the GPU is in one of the four scenes.
Each of these scenes is responsible for drawing one of the components of the
application.

They each contain a struct containing the state necessary for drawing, a
function for initialization, and a function for drawing. Included in the state
are the RenderPipeline and metadata for each shader file used. Using the
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metadata, we can check each frame if the shader has changed, and if so, we can
update the pipeline. This enables rapid development of the shader, without
having to recompile and restart the entire application. Should the file not be
present at startup, we fall back to the shader included at compile time.

poly_optics is responsible for the 2d slice through the entire scene including
rays passing through the lens. We already saw this in figure 2.5.

poly_res contains the dense ray tracing code.

poly_tri is the sparse ray tracing scene. The irradiance calculation in this
scene is done in a separate compute shader, where it is calculated per
vertex from the average area of each neighboring triangle.

poly_poly implements the polynomial drawing.

4.8 OpenFX
The plugin for OpenEffects is in the openfx crate. We only tested the plugin
on Natron on Linux, but it should work on all platforms supported by ofx-rs.

Although the ofx-rs is “Not ready for production” [12], and a plugin written
in it will crash when run on multiple threads, it was possible to work around
the problem by disabling multithreading in the host application.

Writing the plugin in Rust allowed us to re-use the code from section 4.5
for rendering, and we just need to write the interface to the host application.
The rendered image is then copied over to the CPU using the same code as
is used for writing it to a PNG image described in section 4. All updates to
the configuration by the user are immediately reflected in the plugin, and the
image is updated accordingly.

Because “OpenFX bindings” only provides a small subset of the input options
of OFX and for example drop down menus are not available. So instead, we use
sliders for nearly everything, like lens selection which we would have preferred
to be a drop-down menu. This results in the user interface not being very
intuitive, but it is still possible to use the plugin and render animations.
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5 Results

All performance results were obtained on an Intel Core i7-8700K at 4.30GHz,
with an NVIDIA GTX 1070 Ti graphics card.

5.1 Sparse Ray tracing

Through sparsely ray tracing, we can retain almost all visual qualities of dense
ray tracing, but gain a considerable speedup. Figure 5.1 shows comparisons of
the two methods and different number samples for dense ray tracing.

Figure 5.1: Comparison of sparse and dense ray tracing on a tessar lens render-
ing a 8192x8192 image

(a) Sparse (4.5s) (b) Dense (50s) (c) Dense (500s)

Both of our ray tracing implementations also support anamorphic lenses, an
example of which is shown in Figure 5.2.
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Figure 5.2: Comparison of sparse quality settings and dense ray tracing on a
fictional anamorphic lens rendering a 768x768 image.

(a) Low Quality
Sparse (16ms)

(b) Medium Quality
Sparse (77ms)

(c) High Quality
Sparse (200ms)

(d) Medium Quality
Dense (9s)

Figure 5.3: Different Views of Ghost 15 from the Tessar Lens

(a) reduced aperture
size

5.2 Applications
Polyflare comes with two applications, the first is the main application, while
the second is an OpenEffects plugin.

Our main application (figure 5.4) has all features of the Polyflare library,
including interactive dense, sparse and polynomial ray tracing, lens creation,
lens preview, selecting individual ghosts and saving renders. It allows for the
creation of lenses with interactive preview of the lens and resulting ghosts.
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5.2 Applications

The OpenEffects plugin (figure 5.5) shares all persistent data with the main
application, meaning lenses that are created in the main application are also
available in the OpenEffects plugin.

Because of the modular design of the Polyflare library, the rendering compo-
nent of the OpenEffects plugin was implemented within in a few hours, with
the entire plugin being done in a single week.

Figure 5.4: Using the Development Application
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Figure 5.5: Using the Open Effects Plugin in Natron
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5.3 Polynomials

5.3 Polynomials

Figure 5.6: Overview of polynomial error

(a) Ghost 1, x-axis (b) Ghost 1, y-axis

5.3.1 Dense Polynomials

Using a degree of 10 with 11673 samples, our dense polynomial fitting achieves
an error of about 0.002368 using grid sampling and 0.001752 using random
sampling on the x-axis of the first ghost of our example lens. This is equivalent
to about two pixels on a 1080p image.

5.3.2 Sparsifying Polynomials

Different Algorithms

We compare orthogonal matching pursuit and simulated annealing starting
with the same dense polynomial of degree 10 and a total of 1001 terms. It has
an average error of 0.001614. The sparse polynomials retain 100 of these terms.

Algorithm OMP with replacement OMP Simulated Annealing
∅ Time 32 min 45 s 4 min 44 s 4 min 40 s
∅ Error 1.315 1.078 0.06954
Std 0.326 0.348 0.0120
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5 Results

Figure 5.7: Convergence Behavior of Sparsifying Algorithms

(a) OMP (b) SA

Figure 5.8: Orthogonal Matching Pursuit vs. Simulated Annealing

(a) linear axis
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5.3 Polynomials

Simulated Annealing

Simulated annealing has two main tunable parameters: the number of samples
that get taken into account and the number of iterations. The runtime of the
algorithm scales roughly linearly with both of these parameters.

Samples Iterations Runtime Error
1000 5000 139 s 0.0667
1000 10000 275 s 0.0538
2000 5000 275 s 0.0511
10000 5000 1450 s 0.0511
2000 30000 1656 s 0.0377

Taking advantage of multithreading for calculating the error and fitting, the
runtime of the algorithm scales roughly linearly with the number of threads.
For one thread, the runtime is 117s seconds, while with six threads, the runtime
is 24.7 seconds, a speedup of 4.7.

Figure 5.9: Simulated Annealing Convergence Behavior

(a) 30000 iterations, 2000 samples (b) No Fit

With the number of samples set to 30000 the error from inside the algorithm
doesn’t correspond to the actual error. Although the actual error is still smaller
than with fewer samples.

As Simulated Annealing is a stochastic algorithm, the error is not always the
same. Over ten runs with 2000 samples and 30000 iterations each, the average
error is 0.04557 with a standard deviation of 0.007845. A histogram for this
test is shown in figure 5.10.

41



5 Results

Figure 5.10: Simulated Annealing Run Variation

(a) 30000 iterations, 2000 samples
(b) Not fitting

20000 iterations, 10000 samples

Simulated Annealing without Fitting

For 2000 samples and 5000 iterations, skipping the fitting step in simulated
annealing reduces the runtime from 280s to 12s, but also increases the error
to roughly 1.3. When the number of iterations and samples is set to match
the runtime of the algorithm with fitting, the error is 0.82 with a standard
deviation of 0.63.

5.3.3 Rendering using Polynomials

With the average error of the sparse polynomials at about six pixels on a 1k
image, one would expect the resulting image to be visually very similar to the
original. However, the rendering is not anywhere close to that. Instead, we see
a completely different shape in figure 5.11.

This is likely due to an implementation error in the polynomial evaluation
on the GPU, that we were unable to find in the limited timeframe of the thesis.

Nonetheless, the irradiance is still calculated correctly for any given polyno-
mial.
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Figure 5.11: Sparse and Polynomial rendering of the same ghost

(a) Sparse rendering (b) Polynomial rendering
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6 Discussion and Future Work

6.1 Polynomials
We presented simulated annealing for polynomial sparsification, a novel tech-
nique for isolating the most important terms in a dense polynomial, which
provides a significant improvement in error for modeling ghosts, while being as
fast or faster than the previously used orthogonal matching pursuit technique
with and without replacement.

We were able to reduce the error from 1.5 using orthogonal matching pursuit
with replacement to 0.0377 using simulated annealing, or about 1% positional
deviation from the original image, which should result in a visually similar
image. Unfortunately, we were unable to test this, as our implementation of
the rendering algorithm does not result in a correct image. The irradiance
calculation on the other hand does work correctly, although it suffers from
severe aliasing. This aliasing could eventually be addressed by using filtering
methods, that take advantage of the fact that the derivative is easily calculated
analytically. Further improvement for simulated annealing could be achieved
by tuning the parameters of the algorithm.

A basis of orthonormal polynomials proved unsuitable for modeling ghosts,
as no appropriate such basis could be found when discarding rays, which is nec-
essary for modeling ghosts. Nonetheless, orthonormal polynomials seem to be
a good choice for sparse polynomials, as the most difficult and computationally
expensive step, selecting the best combination of terms, becomes trivial using
orthonormal polynomials.

In the future, polynomials could also be used for adaptive ray distribution.

6.2 Rendering
To our knowledge, we provide the first public implementation of real-time
physically based rendering of lens flares.

Our implementation has many parameters, which allow for a trade-off between
quality and performance. It is however somewhat basic and does not provide
more advanced features, such as diffraction, filtering or different parameters per
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ghost. Many of these features have however been considered while designing
the architecture, so that they could easily be implemented in the future.

Our novel technique for using polynomials for computing the irradiance at
each point has several advantages over computing the irradiance from the area
formed by each ray bundle. First, it is much simpler to implement, as each ray
can be considered independently. Second, it improves the quality of the image,
as the irradiance is computed at each ray directly, instead of as the area of the
ray bundle. Third, the visual fidelity of the image can be improved further by
calculating the irradiance of each fragment, similar to the visual improvement
Phong shading provides over Gouraud shading. And finally, the derivative of
the irradiance can be computed analytically, which could improve filtering in
the future.

The last point is especially important, as the major downside of calculating
the irradiance at each point is significant aliasing.

Our library proved flexible enough to quickly develop a new application using
it. It already provides both options for high quality and high performance
rendering, although many optimizations and features are still missing. Possible
improvements include

Optimized Wavelength Sampling Our current implementation samples the
wavelengths uniformly, resulting in color shifts when changing the number
of wavelengths. This could for example be fixed by using a lookup table
of manually selected wavelengths.

Wave-Optics We focused on rendering ghosts, but diffraction at the aperture
results in two noticeable artifacts. The first one is a star burst that
appears over the light source and is easily added as another additive
element over the ghosts. The second artifact is the ringing pattern around
each ghost and has to be more deeply integrated into the pipeline, but
this can be done by replacing a single function in our drawing code.

Filtering or Super Sampling Both the sparse and dense ray tracing techniques
suffer from a high amount of aliasing. This could be addressed by using
a filter or super sampling.

Adaptive Quality Many ghosts can be rendered using very few samples, while
others need many more for a good quality. By choosing a different quality
level for each ghost, Hullin et al. [5] achieved significant improvement.

Culling the Least Visible Ghosts is another technique for improving perfor-
mance without sacrificing quality too much.
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